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my interest in DSLs

2007 student job: developed eAssessment software
customizable web app (struts), portal
server (jetspeed-2), authoring tools

using model-driven technology
Eclipse EMF with GEF, and JAXB
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back at that time

[Stahl and Völter 2006]
likely the most-referenced book on MDSE
helped to establish MDSE as a field
made it known to practitioners
UML-based approach to DSLs
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more DSL books
thanks for the 
foreword, Ralf!
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standards and frameworks

Object Management Group (OMG)

Eclipse Foundation
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allowed building large-scale safety-critical software

figure from: https://www.vsd-project.org/download/presentations/VSD_P2_FP_2012-05-15_v3.pdf 

www.vsd-project.org
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DSLs for autonomous driving

Queiroz, Berger, Czarnecki, “Geoscenario: An Open DSL for Autonomous Driving Scenario 
Representation,” in 30th IEEE Intelligent Vehicles Symposium (IV), 2019.

Queiroz, Sharma, Caldas, Czarnecki, Garcia, Berger, Pelliccione, “A Driver-Vehicle Model for 
ADS Scenario-based Testing,” IEEE Transactions on Intelligent Transportation Systems (T-ITS), 
2024 8



DSLs for robots

RoboCup taskshuman-robot interaction

gesture recognition
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many different technological spaces

modelware (SE perspective)
grammarware (PL perspective)

others, according to [Lämmel 2018]
XMLware (e.g., XML, XML infoset, DOM, DTD, XML Schema, XPath, XQuery, XSLT)
JSONware (e.g., JSON, JSON Schema, JSONata)
SQLware (e.g., table, SQL, relational model, relational algebra, WOL),
RDFware (e.g., resource, triple, Linked Data, RDF, RDFS, OWL, SPARQL, STTL)
Objectware (e.g., objects, object graphs, object models, state, behavior, visitor pattern)
Javaware (e.g., Java, Java bytecode, JVM, Eclipse, JUnit)
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DSLs in the age of agile and AI?

DSLs for automation more important than ever

DSLs for assuring guarantees
SE4AI / AI4SE

automation abstraction language
requires requires

guarantees abstraction language
require require
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“Language is sufficient to any
thought. Imperfect expression is the

fault of limited writers, not limited language.”

Francis-Noël Thomas       Mark Turner
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“Parser development is still a black art.”

Paul Klint, Ralf Lämmel, and Chris Verhoef. “Toward an engineering discipline for Grammarware”. ACM Trans. Softw. Eng. Methodol. 2005
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{
 "Lego": "Star",
 "Length": 20,
 "Width": 20,
 "Bricks" : [{
  "Brick": "Wars",
  "Width": [4],
  "Length": [2]
 }, {
  "Brick": "Trek",
  "Width": [2],
  "Length": [2]
 }]
}

smaller DSLs built in my course

a DSL for Lego bricks
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AdjLegoSystem {
 thickness 20
 finalBrick Pizza
 abstractlegobrick {   
  RoundedBrick Pizza{ 
   roundedSide ALL
   sizeproperties {
    int length = 7,
    int width = 7
   }
  },
  SlicedBrick Slice {
   portions 3
   brick Pizza
  } 
 }

}

built with different styles of concrete syntax

15



AdjLegoSystem {
 thickness 7
 finalBrick Boomerang
 abstractlegobrick {   
  RoundedBrick Frisbee{
   roundedSide RIGHT
   sizeproperties {
    int length = 4,
    int width = 2
   }
  },
  
  SquareBrick Stick {      
   sizeproperties {
    int length = 4,
    int width = 2
   } 
  },  
  
  Combination Boomerang {
   mainSide LEFT
   position 3
   main Frisbee
   secondary Stick
  }
}

containing composition operators
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dimensions 10 x 10;
"2x4": 2 x 4;
"4x2": 4 x 2; 
"1x8": 1 x (2 * "4x4".width);
"4x4": "2x4".height x (2 * "2x4".width);
"Composite Brick 1": "2x4" <- "4x4" TOP: LEFT 1 <- LEFT 1;
"Composite Brick 2": "2x4" <- "4x2" BOTTOM: LEFT 1 <- LEFT 4;
"Composite Brick 3": "1x8" <- "4x2" RIGHT: TOP 1 <- BOTTOM 2;

many more styles of concrete syntax

17



brick smiley
 o o o o o o o o,
 o _ _ o o _ _ o,
 o _ _ o o _ _ o,
 o o o o o o o o,
 o _ o o o o _ o,
 o _ _ _ _ _ _ o,
 o o o o o o o o,

maxwidth 10
maxlength 10

abstract brick a
  o o o,
  o o o,

abstract brick b
  _ o o,
  _ o o,
  _ o o,

combo T a over b

unleashing creativity
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So how do we teach DSL engineering?

How can our book help?
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highlights

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs
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concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs
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finite state machines as a DSL

domain analysis to identify 
concepts and relationships
formalize in a meta-model
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finite state machine (FSM) DSL

abstract syntax
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principles

guideline 3.1: create a single partonomy
guideline 3.2: avoid interfaces and methods

...

guideline 3.7: let the meta-model describe the 
problem, not the software tool solving it
guideline 3.8: avoid scope creep

... partonomy of FSM
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meta-modeling
hierarchy
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multi-level modeling?

a concept that is now easy to explain upon
the meta-modeling hierarchy
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concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts
easier to remember, easier to understand

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs
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quality assurance of meta-models

Definition 3.4. A meta-model is consistent if it can be instantiated meeting all constraints of the meta-
modeling language semantics. A meta-model is element-consistent if for each element of the meta-
model there exists an instance in which this element is instantiated.

Definition 3.5. A meta-model is parsimonious if it contains no meta-classes, no relations (references, 
associations), and no attributes that do not address any system requirements for the modeling language.
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static semantics of DSLs

an unexpected instance

Definition 5.3. A constraint is a pure (side-effect free) Boolean expression declared over elements of a 
meta-model, but interpreted over its instances. Its purpose is to restrict the set of valid instances of the 
meta-model.
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more illustrative examples
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static semantics: meta-model + domain / type constraints
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ingredients of a type system

unlike a typical constraint, a type system examines the entire instance, not just few related objects
may overwhelm when compared to the terse structural constraints
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concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs
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creating instances
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writing constraints

Exercise 5.33. Write the following constraint in the context of the printer pool 
class in the meta-model: Each printer pool with a fax must have a printer, and 
each printer pool with a copier must have a scanner and a printer.
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writing interpreters
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concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs
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meta-models vs. algebraic data types
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model transformation example

FSM to petri nets

QVT-O
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program transformation example

manipulate logical expressions
constant propagation
expression simplification
conversion into conjunctive normal form (CNF)

using term rewriting
specifically strategic programming with kiama
https://github.com/inkytonik/kiama

41



if you don’t have a 
transformation language...
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or apply the wrong paradigm for your problem?

expression simplification in Henshin (graph transformation)
rewriting of ((A∧B)∧C) when B =C
equivalent to one line in Scala
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external vs internal DSLs

internal DSL in Scala
(PL perspective)

external DSL in Xtext
(SE perspective)
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FSM (finite state machine) as an internal DSL
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Lunar lander

not part of this book  
limitation of our engineering support?

https://www.scala-lang.org/old/node/1403 46



concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs
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testing a program transformation

let’s test our transformation of logical 
expression to conjunctive normal form (CNF)

simple scenarios that cover individual
transformation rules
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instance generation

problem: instance generation
i.e., generate large expressions

the book shows how to use
Alloy or
Scalacheck’s Gen API

let’s implement an instance
generator pragmatically
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the oracle problem

test oracle
tell whether expression is in CNF or not
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concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

51



larger DSL: robot (with ROS and webots infrastructure)
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larger DSL: prpro (probabilistic programming)

with PyMC infrastructure
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many more topics in the book

interpretation

code generation

internal DSLs

DSLs for product lines

DSL product lines
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concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

bringing it all together is challenging
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start teaching with an overview example

students find it 
challenging 
connecting all the 
different parts of 
creating a DSL
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exercises, guidelines, examples

277 exercises

71 guidelines

>30 examples
many with sources in our code repository

http://dsl.design 

502 pages
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a new DSL textbook in town!

Thorsten Berger
thorsten.berger@rub.de

http://dsl.design 

using the book?
let us know!
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