
a new DSL textbook in town!

thorsten berger

Keynote, SLE’25

http://dsl.design 54321Skip Ad

Andrzej Wasowski Thorsten Berger

2

my interest in DSLs

2007 student job: developed eAssessment software
customizable web app (struts), portal
server (jetspeed-2), authoring tools

using model-driven technology
Eclipse EMF with GEF, and JAXB

3

back at that time

[Stahl and Völter 2006]
likely the most-referenced book on MDSE
helped to establish MDSE as a field
made it known to practitioners
UML-based approach to DSLs

4

more DSL books
thanks for the
foreword, Ralf!

5

standards and frameworks

Object Management Group (OMG)

Eclipse Foundation

6

allowed building large-scale safety-critical software

figure from: https://www.vsd-project.org/download/presentations/VSD_P2_FP_2012-05-15_v3.pdf

www.vsd-project.org

7

https://www.vsd-project.org/download/presentations/VSD_P2_FP_2012-05-15_v3.pdf

DSLs for autonomous driving

Queiroz, Berger, Czarnecki, “Geoscenario: An Open DSL for Autonomous Driving Scenario
Representation,” in 30th IEEE Intelligent Vehicles Symposium (IV), 2019.

Queiroz, Sharma, Caldas, Czarnecki, Garcia, Berger, Pelliccione, “A Driver-Vehicle Model for
ADS Scenario-based Testing,” IEEE Transactions on Intelligent Transportation Systems (T-ITS),
2024 8

DSLs for robots

RoboCup taskshuman-robot interaction

gesture recognition

9

many different technological spaces

modelware (SE perspective)
grammarware (PL perspective)

others, according to [Lämmel 2018]
XMLware (e.g., XML, XML infoset, DOM, DTD, XML Schema, XPath, XQuery, XSLT)
JSONware (e.g., JSON, JSON Schema, JSONata)
SQLware (e.g., table, SQL, relational model, relational algebra, WOL),
RDFware (e.g., resource, triple, Linked Data, RDF, RDFS, OWL, SPARQL, STTL)
Objectware (e.g., objects, object graphs, object models, state, behavior, visitor pattern)
Javaware (e.g., Java, Java bytecode, JVM, Eclipse, JUnit)

10

DSLs in the age of agile and AI?

DSLs for automation more important than ever

DSLs for assuring guarantees
SE4AI / AI4SE

automation abstraction language
requires requires

guarantees abstraction language
require require

11

“Language is sufficient to any
thought. Imperfect expression is the

fault of limited writers, not limited language.”

Francis-Noël Thomas Mark Turner

12

“Parser development is still a black art.”

Paul Klint, Ralf Lämmel, and Chris Verhoef. “Toward an engineering discipline for Grammarware”. ACM Trans. Softw. Eng. Methodol. 2005

13

{
 "Lego": "Star",
 "Length": 20,
 "Width": 20,
 "Bricks" : [{
 "Brick": "Wars",
 "Width": [4],
 "Length": [2]
 }, {
 "Brick": "Trek",
 "Width": [2],
 "Length": [2]
 }]
}

smaller DSLs built in my course

a DSL for Lego bricks

14

AdjLegoSystem {
 thickness 20
 finalBrick Pizza
 abstractlegobrick {
 RoundedBrick Pizza{
 roundedSide ALL
 sizeproperties {
 int length = 7,
 int width = 7
 }
 },
 SlicedBrick Slice {
 portions 3
 brick Pizza
 }
 }

}

built with different styles of concrete syntax

15

AdjLegoSystem {
 thickness 7
 finalBrick Boomerang
 abstractlegobrick {
 RoundedBrick Frisbee{
 roundedSide RIGHT
 sizeproperties {
 int length = 4,
 int width = 2
 }
 },

 SquareBrick Stick {
 sizeproperties {
 int length = 4,
 int width = 2
 }
 },

 Combination Boomerang {
 mainSide LEFT
 position 3
 main Frisbee
 secondary Stick
 }
}

containing composition operators

16

dimensions 10 x 10;
"2x4": 2 x 4;
"4x2": 4 x 2;
"1x8": 1 x (2 * "4x4".width);
"4x4": "2x4".height x (2 * "2x4".width);
"Composite Brick 1": "2x4" <- "4x4" TOP: LEFT 1 <- LEFT 1;
"Composite Brick 2": "2x4" <- "4x2" BOTTOM: LEFT 1 <- LEFT 4;
"Composite Brick 3": "1x8" <- "4x2" RIGHT: TOP 1 <- BOTTOM 2;

many more styles of concrete syntax

17

brick smiley
 o o o o o o o o,
 o _ _ o o _ _ o,
 o _ _ o o _ _ o,
 o o o o o o o o,
 o _ o o o o _ o,
 o _ _ _ _ _ _ o,
 o o o o o o o o,

maxwidth 10
maxlength 10

abstract brick a
 o o o,
 o o o,

abstract brick b
 _ o o,
 _ o o,
 _ o o,

combo T a over b

unleashing creativity

18

So how do we teach DSL engineering?

How can our book help?

19

highlights

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

20

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

21

finite state machines as a DSL

domain analysis to identify
concepts and relationships
formalize in a meta-model

22

finite state machine (FSM) DSL

abstract syntax

23

principles

guideline 3.1: create a single partonomy
guideline 3.2: avoid interfaces and methods

...

guideline 3.7: let the meta-model describe the
problem, not the software tool solving it
guideline 3.8: avoid scope creep

... partonomy of FSM

24

meta-modeling
hierarchy

25

multi-level modeling?

a concept that is now easy to explain upon
the meta-modeling hierarchy

26

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts
easier to remember, easier to understand

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

27

quality assurance of meta-models

Definition 3.4. A meta-model is consistent if it can be instantiated meeting all constraints of the meta-
modeling language semantics. A meta-model is element-consistent if for each element of the meta-
model there exists an instance in which this element is instantiated.

Definition 3.5. A meta-model is parsimonious if it contains no meta-classes, no relations (references,
associations), and no attributes that do not address any system requirements for the modeling language.

28

static semantics of DSLs

an unexpected instance

Definition 5.3. A constraint is a pure (side-effect free) Boolean expression declared over elements of a
meta-model, but interpreted over its instances. Its purpose is to restrict the set of valid instances of the
meta-model.

29

more illustrative examples

30

static semantics: meta-model + domain / type constraints

31

ingredients of a type system

unlike a typical constraint, a type system examines the entire instance, not just few related objects
may overwhelm when compared to the terse structural constraints

32

33

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

34

creating instances

35

writing constraints

Exercise 5.33. Write the following constraint in the context of the printer pool
class in the meta-model: Each printer pool with a fax must have a printer, and
each printer pool with a copier must have a scanner and a printer.

36

writing interpreters

37

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

38

meta-models vs. algebraic data types

39

model transformation example

FSM to petri nets

QVT-O

40

program transformation example

manipulate logical expressions
constant propagation
expression simplification
conversion into conjunctive normal form (CNF)

using term rewriting
specifically strategic programming with kiama
https://github.com/inkytonik/kiama

41

if you don’t have a
transformation language...

42

or apply the wrong paradigm for your problem?

expression simplification in Henshin (graph transformation)
rewriting of ((A∧B)∧C) when B =C
equivalent to one line in Scala

43

external vs internal DSLs

internal DSL in Scala
(PL perspective)

external DSL in Xtext
(SE perspective)

44

FSM (finite state machine) as an internal DSL

45

Lunar lander

not part of this book
limitation of our engineering support?

https://www.scala-lang.org/old/node/1403 46

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

47

testing a program transformation

let’s test our transformation of logical
expression to conjunctive normal form (CNF)

simple scenarios that cover individual
transformation rules

48

instance generation

problem: instance generation
i.e., generate large expressions

the book shows how to use
Alloy or
Scalacheck’s Gen API

let’s implement an instance
generator pragmatically

49

the oracle problem

test oracle
tell whether expression is in CNF or not

50

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

51

larger DSL: robot (with ROS and webots infrastructure)

52

larger DSL: prpro (probabilistic programming)

with PyMC infrastructure

53

many more topics in the book

interpretation

code generation

internal DSLs

DSLs for product lines

DSL product lines

54

concrete examples exemplify principles

definitions: from 'walls of thought' to crisp concepts

concrete exercises: train building low-level skills

PL perspective linked and mixed with SE perspective

teaching to test is teaching to build

teach small and larger DSLs

bringing it all together is challenging
55

start teaching with an overview example

students find it
challenging
connecting all the
different parts of
creating a DSL

56

exercises, guidelines, examples

277 exercises

71 guidelines

>30 examples
many with sources in our code repository

http://dsl.design

502 pages

57

http://dsl.design/

http://dsl.design

Andrzej Wasowski Thorsten Berger

acknowledgements

We thank all students and colleagues who helped to create this book by
finding errors, contributing examples, and participating in stimulating
discussions. We owe you: Abdulrashid Masab Mohammed, Alexandru
Florin Iosif-Lazar, Anders Fischer Nielsen, Cem Turan, Christoffer
Stougaard Pedersen, Daniel Struber, Erik Meijer, Francisco Martinez
Lasaca, Georg Hinkel, Hjalte Sorgenfrei Mac Dalland, Jalil Boudjadar, Jean
Bezivin, Jean Privat, Jeremy Gibbons, Jonatan Gustafsson, Jurgen Vinju,
Karol Wa˛sowski, Kasper Hansen, Marek Furak, Martin Schoeberl, Mietek
Bak, Oscar Jonsson, Peter Sestoft, Ralf Gerstner, Ralf Lämmel, Robert
Palm, Robin Bellini Olsson, Rolf-Helge Pfeiffer,Stefan Stanciulescu, Sven
Peldszus, Tijs van der Storm, Titus Barik, Tobias Schwarz, Vadim Zaytsev,
and typeswitch (of Twitter). Several hundred students in Copenhagen and
Gothenburg have bravely taken our courses, being the main motivation for
us, while also serving as betatesters. Phil Watson, our copy editor at
Springer, not only mercilessly pointed out wrong articles, misspellings, and
hyphenation errors, but also identified problems in arguments and
formulae. We thank you all. All remaining flaws are ours.

58

a new DSL textbook in town!

Thorsten Berger
thorsten.berger@rub.de

http://dsl.design

using the book?
let us know!

59

	a new DSL textbook in town!
	Slide Number 2
	my interest in DSLs
	back at that time
	more DSL books
	standards and frameworks
	allowed building large-scale safety-critical software
	DSLs for autonomous driving
	DSLs for robots
	many different technological spaces
	DSLs in the age of agile and AI?
	Slide Number 12
	Slide Number 13
	smaller DSLs built in my course�
	built with different styles of concrete syntax
	containing composition operators
	many more styles of concrete syntax
	unleashing creativity
	Slide Number 19
	highlights
	Slide Number 21
	finite state machines as a DSL
	finite state machine (FSM) DSL�
	principles
	meta-modeling�hierarchy
	multi-level modeling?
	Slide Number 27
	quality assurance of meta-models
	static semantics of DSLs
	more illustrative examples
	static semantics: meta-model + domain / type constraints
	ingredients of a type system
	Slide Number 33
	Slide Number 34
	creating instances
	writing constraints
	writing interpreters
	Slide Number 38
	meta-models vs. algebraic data types
	model transformation example
	program transformation example
	if you don’t have a transformation language...
	or apply the wrong paradigm for your problem?
	external vs internal DSLs
	FSM (finite state machine) as an internal DSL
	Lunar lander
	Slide Number 47
	testing a program transformation
	instance generation
	the oracle problem
	Slide Number 51
	larger DSL: robot (with ROS and webots infrastructure)
	larger DSL: prpro (probabilistic programming)
	many more topics in the book
	Slide Number 55
	start teaching with an overview example
	exercises, guidelines, examples
	acknowledgements
	Slide Number 59
	backup slides
	Slide Number 61
	systems thinking?
	31 ML models in one system
	SE4AI
	our DSL ‘PROMISE’ for robot teams
	Slide Number 68
	Slide Number 69
	small DSLs
	guidelines for specifying concrete syntax
	Slide Number 72
	highlights
	DSL engineering
	PL and SE

